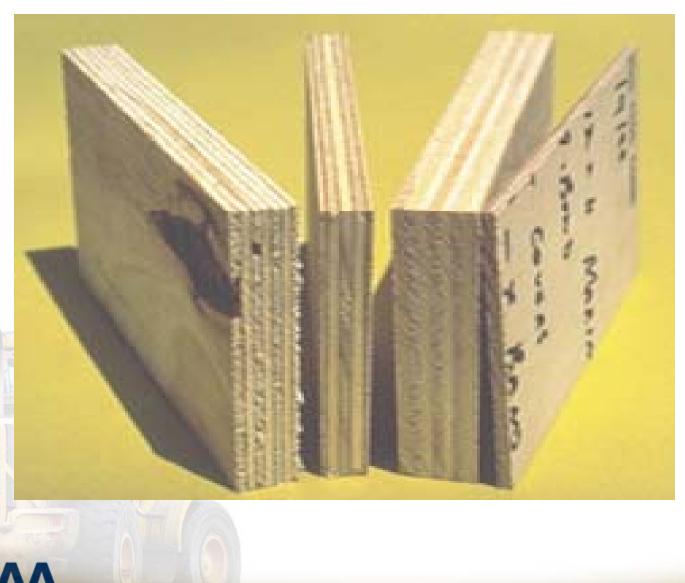
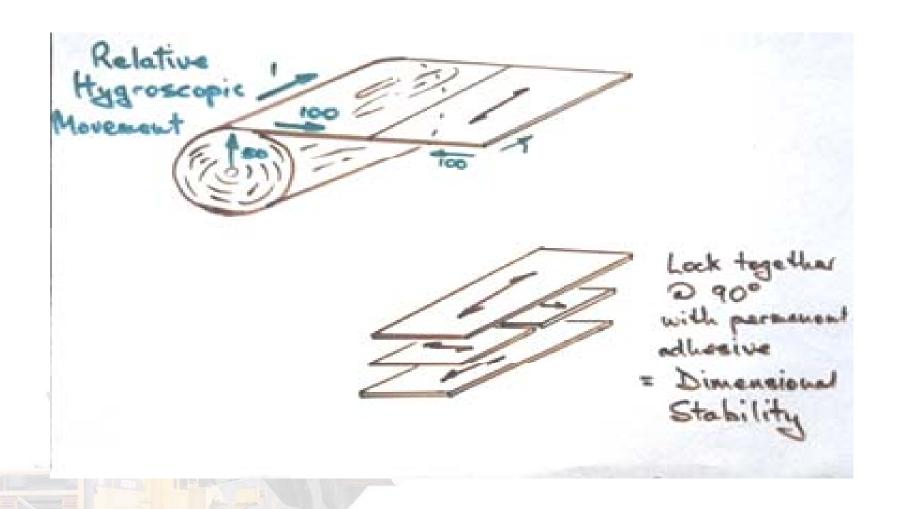
Engineered Wood Products

Building an Innovative, Sustainable Future

Building in Confidence

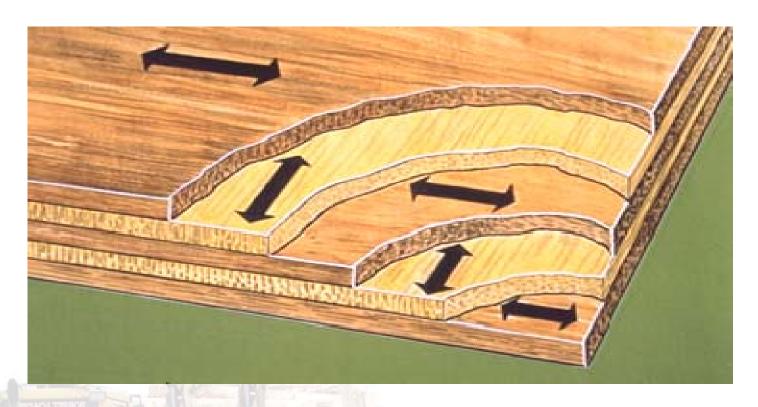
Simon Dorries
General Manager Engineered Wood Products Association of Australasia


23rd November, 2010


EWP's Have the following in common

- WOOD (solid timber laminates, veneers, strands, flakes, fibres, chips etc)
- > ADHESIVE structural adhesives
- STRUCTURALLY RATED F grade, span rated, Published Characteristic structural properties

Structural Plywood


EWPAA

Bonded with Type A phenolic adhesive

Cross-Lamination

- •Stops splitting along the grain- Nail only 10mm from the edge
- •Improves dimensional stability
- •Increases panel shear properties
- •Randomises defects- Improved strength and stiffness

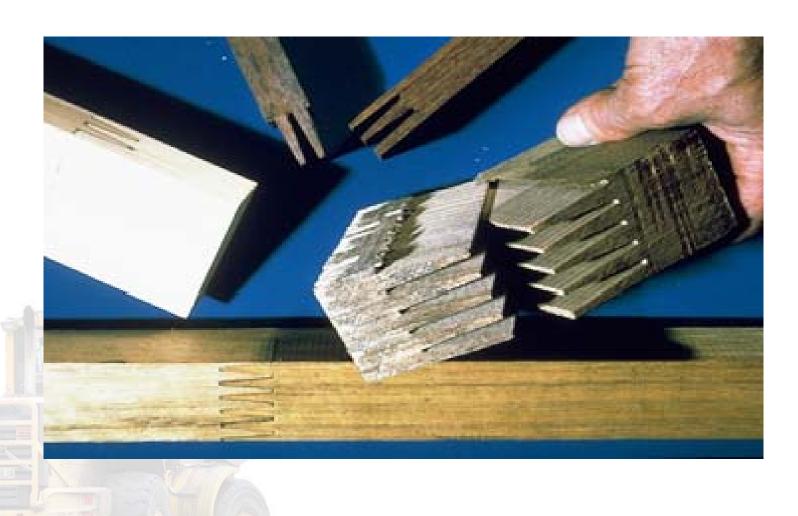
Structural Laminated Veneer Lumber

Metri-guard Grading of Veneers

EWPAA

Structural Laminated Veneer Lumber

- graded parallel veneers
- phenolic bond
- staggered veneer joints
- 1200mm wide continuous length
- 36, 45, 63, 75, 90, 105, 120 thick
- 50% stiffer 2-3 X stronger
- Low co-efficient of variation (less than 10%)



Glue Laminated Timber

EWPAA

Strength Reducing Defects Removed Through Finger Jointing

Glue laminated Timber

- graded timber laminates
- Resorcinol/PU bond
- staggered finger joints
- 1200mm wide long length
- Stiffer and stronger than the parent wood
- Low co-efficient of variation (less than 15%)
- Decorative beams are available

Timber I-Beams

EWPAA

I beams utilise timber and wood panel properties to advantage

The tension and compression are carried in the flanges and utilise timber's strength and stiffness

The web transfers these shear forces inplane in truss type action utilising panel shear capacity and dimensional stability

Efficient Use of resource

When compared to sawn timber I-beams maximise the end product from the log

1m³ log

12 / 4m 190 x 45 MGP 10

24/4m 200 I beam

Structural Properties of Plywood Standard Grades

TABLE 2: CHARACTERISTIC STRENGTHS AND STIFFNESS FOR STRUCTURAL PLYWOOD (MOISTURE CONTENT 15% OR LESS).

Stress grade		Short duration average	Short duration average				
	Bending	Tension	Panel Shear	Compression in the plane of the sheet	Bearing normal to the plane of the sheet	modulus of elasticity MPa	modulus of rigidity MPa
	(f' _b)	(f' _t)	(f' _s)	(f' _c)	(f' _p)	(<i>E</i>)	(G)
F34 F27 F22 F17 F14 F11 F8 F7	100 80 65 50 40 35 25 20	60 50 40 30 25 20 15	6.8 6.8 6.8 6.1 5.3 4.7 4.2	75 60 50 40 30 25 20	31 27 23 20 15 12 9.7	21 500 18 500 16 000 14 000 12 000 10 500 9 100 7 900	1 075 925 800 700 625 525 455 345

Use of F-grades

Structural Properties of Glulam Standard grades

TABLE 7.1
CHARACTERISTIC VALUES FOR STRUCTURAL DESIGN—GL-GRADES

Stress grade	Characteristic values, MPa											
	Bending (f_b')	Tension parallel to grain (f'_t)	Shear in beam (f'_s)	Compression parallel to grain (f'_c)	Short duration average modulus of elasticity parallel to the grain (E)	Short duration average modulus of rigidity for beams (G)						
GL18	45	25	5.0	45	18500	1230						
GL17	40	20	4.2	33	16700	1110						
GL13	33	16	4.2	26	13300	900						
GL12	25	11	4.2	22	11500	770						
GL10	22	8	3.7	18	10000	670						
GL8	19	6	3.7	14	8000	530						

NOTE: The characteristic values for tension for GL grades apply for tension members with the larger cross-sectional dimension not greater than 150 mm. For tension members with a cross-sectional dimension greater than 150 mm, the characteristic values are determined by multiplying the value in the table by $(150/d)^{0.167}$, where d is the larger cross-sectional dimension of the section.

LVL - No Standard Grades Structural Properties declared by the manufacturer

TABLE 1
PROPERTIES TO BE DETERMINED DEPENDING UPON END USE

	Strength and stiffness										Joint strength			
Intended		Be	ending	g, shea	r and bearing			Axial				Self-		
application	On flat			On edge					Nails	Bolts	drilling screws,	Nail		
	E	f.	f.	f _P	E	f	f.	f _P	f.	f °.			e.g., Type 17	plates
General beams used on edge only					~	*	>	>			√	V	√	
Scaffold planks or other applications involving flat-wise bending only	V	*	*	*										
General structural use	>	~	~	~	~	~	*	>	×	*	√	✓	✓	
Nail-plate jointed trusses (see Note 2)					~	✓	✓	*	√	*	~	✓		✓

NOTES:

- 1 \(\square\) indicates property to be determined.
- 2 Assumes on-edge orientation. Where used on flat, corresponding on-flat properties will be required.

I-Beams- No Standard Grades Span Tables Published by the Manufacturer

CERTIFICATION

100% of plywood and LVL manufactured in Australia, New Zealand, Fiji and PNG is certified as compliant to Australian Standards by the EWPAA

Glulam is certified by the GLTAA (Glue laminated timber Association)

EWPAA Lab tests 10,000 samples/yr

Formaldehyde Emissions

The EWPAA has 2 emission testing labs and test about 6000 samples/yr.

All EWPAA certified structural plywood and LVL meets emission Class E₀

Allows qualification for addition Green Star Points.

PRODUCT CERTIFIED

PRODUCT CERTIFIED

EWPAA

Forest Certification

100% of plywood and LVL made in Australia and New Zealand is from certified forests